Intra-seasonal variability in the African monsoon

S. Janicot

and contributions of A. Diedhiou, S. Gervois, G. Kiladis, A. Matthews, F. Mounier, N. Hall, B. Sultan, C. Taylor

What are intra-seasonal time scales in the African monsoon?

Daily Sahelian rainfall (*IRD data*) from May to October 1968 wavelet analysis

Why studying intra-seasonal variability?

- Agriculture is strongly rainfall dependent.
- Dry/wet sequence occurrences modulate significantly crop yields.
- Their impact depends also on when they occur in the crop development.
- So a dry sequence occurring during a critical stage of the crop development can induce a bad yield even if the total season rainfall amount is good
- Farmers needs : onset date, dry spells, withdrawal date
- Intra-seasonal time scale is presently unpredictable while synoptic and seasonal forecasts are functioning more or less well
- So we need a better knowledge of the related mechanisms

Results presented here is a documentation on June-September data:

- NOAA Outgoing Longwave Radiation data from 1979
 - daily averaged OLR data on a regular 2.5° grid
- NCEP-2 reanalyses from 1979
 - Daily averaged data on a regular 2.5° grid
- IRD rainfall data from 1979
 - Daily data on a regular 2.5° grid over land
- Pre-filtering of the data
- EOF decomposition
- Composite analyses
- Using shallow water model wave solutions

Wave families solution of the shallow water model

dispersion curves

Separation apart of the equator into:

- Symmetric
- Anti-symmetric

- \rightarrow β -plan approximation (the Coriolis parameter is linearly proportional to the latitude)
- → constrain of a decay of the solutions away from the Equator (equatorially-trapped)

 Wavenumber-frequency analysis of OLR in June-September 1979-2000 over the whole tropics symmetric component (Wheeler & Kiladis 1999)

Identify convectively-coupled signal

- Kelvin waves
- Equatorial Rossby waves
- Tropical Depression signal
- MJO signal

 Wavenumber-frequency analysis of OLR in June-September 1979-2000 over the whole tropics
 symmetric component (Wheeler & Kiladis 1999)

EOF analysis of filtered OLR in June-September over Africa

10-25-day 25-90-day

 Wavenumber-frequency analysis of OLR in June-September 1979-2000 over the whole tropics
 symmetric component (Wheeler & Kiladis 1999)

EOF analysis of filtered OLR in June-September over Africa

10-25-day 25-90-day

Composite of unfiltered OLR fields of (wet - dry) events / reconstruction of ITCZ 10°W-10°E OLR index

Detected modes over West and Central Africa

Wet minus dry events

Left: V925hPa and rainfall over land

Right: OLR

Kelvin waves & Easterly waves

Composite for Kelvin waves

OLR & V925hPa

Composite for Easterly waves (TD)

Kelvin wave pattern

- Convection anomalies coherent with convergence & divergence
- Coupling with convection / northward shift (follows the ITCZ)
- Enclosed into geopotential anomalies / wind anomaly coherent over the ocean and symmetric / 5°N

Theoretical Kelvin horizontal structure in a dry atmosphere

Matsuno 1966

OLR and 925hPa wind and geopotential

wet - dry events

Vertical-time section of the Kelvin wave at 20°W

- vertical velocity shaded
- zonal-vertical wind vectors
 - temperature isolines

Easterly waves

- Synoptic scale -

Kelvin waves

A Kelvin wave occurrence during 1 - 10th July 1984

Kelvin wave are
moving eastward
and modulate
the activity of
individual convective
systems

10-90 days filtered OLR-NOAA

EOF on OLR filtered between 10 and 90 days

Guinean mode

- 15-day scale -

Sahelian mode

to - 6 days / + 6 days

Guinean mode

OLR and 200hPa velocity potential

OLR and 925hPa wind and geopotential

Surface condition interaction hypothesis

Mechanism of interaction with the surface conditions and

over a larger scale interaction with Kelvin waves?

Sahelian mode

- 15-day scale -

to - 6 days / + 6 days

Sahel mode OLR & wind at 925hPa

C. Taylor's work 2007

Sensible heat flux (shaded), T (contours) & V at 925hPa

(b) 6 4 2 -2 -4 -6 15W 1DW 5W D 5E 10E 15E 2DE 25E 30E 35E

Sensible heat flux, T at 925hPa

Convection ---> rainfall ---> high soil moisture

Cooler PBL <--- Sensible heat fluxes decrease

decreases relative vorticity ---> southerly flow to the west and

Favors rainfall ahead ---> westward progression of the surface forcing

Convection development to the west

Sahelian mode

- 15-day scale -

Eqt Rossby wave

to - 6 days / + 6 days

	Rossby wave
Propagation	westward
Wave- length	7000 km
Speed	4.5 m/s
Period	18 days

Rossby waves over Africa

- Good coherence for convection and the associated circulation
- Symmetry apart of the ITCZ instead of the equator for all anomalies (not only convection)

Theoretical Rossby horizontal structure in a dry atmosphere

Matsuno 1966

OLR and 925hPa wind and geopotential

Links between Sahel mode and European weather types

Composite of 25-90-day filtered OLR 1st EOF

to - 10 days / + 10 days

Matthews' work 2004

OLR, V925hPa, Z925hPa

OLR and 925hPa wind and geopotential

Kelvin filtered OLR

30N 20N 10S 10S 30N 10S 10S 30N 20N 10N 20N 10N 10S 20N 10N 10S 120W 60E 180 60W

Eq Rossby filtered OLR

MJO filtered OLR

K+ER+MJO filtered OLR

25-90-day

K+ER+MJO

Conclusion

- Intra-seasonal variability modulates significantly convection in the African summer monsoon
- Three periodicity bands:
 - synoptic systems (African easterly waves and Kelvin waves)
 - ~ 15 days (2 main modes : West-Central Africa, Sahel)
 - ~ 40 days (the main mode on West-Central Africa)
- Connections with equatorial waves dynamics and MJO
- Possible impact on monsoon onset
- More investigation on
 - connections between Indian and African monsoons
 - connections with European weather regimes
 - contribution to interannual variability